Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(2): e10874, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390000

RESUMEN

Numerous factors influence the timing of spring migration in birds, yet the relative importance of intrinsic and extrinsic variables on migration initiation remains unclear. To test for interactions among weather, migration distance, parasitism, and physiology in determining spring departure date, we used the Dark-eyed Junco (Junco hyemalis) as a model migratory species known to harbor diverse and common haemosporidian parasites. Prior to spring migration departure from their wintering grounds in Indiana, USA, we quantified the intrinsic variables of fat, body condition (i.e., mass ~ tarsus residuals), physiological stress (i.e., ratio of heterophils to lymphocytes), cellular immunity (i.e., leukocyte composition and total count), migration distance (i.e., distance to the breeding grounds) using stable isotopes of hydrogen from feathers, and haemosporidian parasite intensity. We then attached nanotags to determine the timing of spring migration departure date using the Motus Wildlife Tracking System. We used additive Cox proportional hazard mixed models to test how risk of spring migratory departure was predicted by the combined intrinsic measures, along with meteorological predictors on the evening of departure (i.e., average wind speed and direction, relative humidity, and temperature). Model comparisons found that the best predictor of spring departure date was average nightly wind direction and a principal component combining relative humidity and temperature. Juncos were more likely to depart for spring migration on nights with largely southwestern winds and on warmer and drier evenings (relative to cooler and more humid evenings). Our results indicate that weather conditions at take-off are more critical to departure decisions than the measured physiological and parasitism variables.

2.
Emerg Microbes Infect ; 11(1): 2746-2748, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36285426

RESUMEN

American robins and dark-eyed juncos migrate across North America and have been found to be competent hosts for some bacterial and viral pathogens, but their contributions to arthropod-borne diseases more broadly remain poorly characterized. Here, we sampled robins and juncos in multiple sites across North America for arthropod-borne bacterial pathogens of public health significance. We identified two novel Rickettsia spp. in one wintering migrant per bird species related to bellii, transitional, and spotted rickettsiae fever groups. Stable isotope analyses of feathers suggested spring migration of these common songbirds could disperse these novel rickettsiae hundreds-to-thousands of kilometers to host breeding grounds. Further work is needed to characterize zoonotic potential of these rickettsiae and host reservoir competence.


Asunto(s)
Rickettsia , Pájaros Cantores , Animales , Rickettsia/genética , Estaciones del Año , América del Norte
3.
Proc Biol Sci ; 287(1935): 20201831, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32962545

RESUMEN

Urban habitats can shape interactions between hosts and parasites by altering not only exposure rates but also within-host processes. Artificial light at night (ALAN) is common in urban environments, and chronic exposure can impair host immunity in ways that may increase infection. However, studies of causal links between this stressor, immunity, and infection dynamics are rare, particularly in migratory animals. Here, we experimentally tested how ALAN affects cellular immunity and haemosporidian parasite intensity across the annual cycle of migrant and resident subspecies of the dark-eyed junco (Junco hyemalis). We monitored an experimental group exposed to light at night and a control group under natural light/dark cycles as they passed through short days simulating early spring to longer days simulating the breeding season, followed by autumn migration. Using generalized additive mixed models, we show that ALAN increased inflammation, and leucocyte counts were greatest in early spring and autumn. At the start of the experiment, few birds had active infections based on microscopy, but PCR revealed many birds had chronic infections. ALAN increased parasitaemia across the annual cycle, with strong peaks in spring and autumn that were largely absent in control birds. As birds were kept in indoor aviaries to prevent vector exposure, this increased parasitaemia indicates relapse of chronic infection during costly life-history stages (i.e. reproduction). Although the immunological and parasitological time series were in phase for control birds, cross-correlation analyses also revealed ALAN desynchronized leucocyte profiles and parasitaemia, which could suggest a general exaggerated inflammatory response. Our study shows how a common anthropogenic influence can shape within-host processes to affect infection dynamics.


Asunto(s)
Migración Animal , Pájaros Cantores/parasitología , Animales , Cruzamiento , Parasitemia , Parásitos , Recurrencia , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...